Efficient fermentative production of polymer-grade D-lactate by an engineered alkaliphilic Bacillus sp. strain under non-sterile conditions.

نویسندگان

  • Nilnate Assavasirijinda
  • Deyong Ge
  • Bo Yu
  • Yanfen Xue
  • Yanhe Ma
چکیده

BACKGROUND Polylactic acid (PLA) is one important chemical building block that is well known as a biodegradable and a biocompatible plastic. The traditional lactate fermentation processes need CaCO3 as neutralizer to maintain the desired pH, which results in an amount of insoluble CaSO4 waste during the purification process. To overcome such environmental issue, alkaliphilic organisms have the great potential to be used as an organic acid producer under NaOH-neutralizing agent based fermentation. Additionally, high optical purity property in D-lactic acid is now attracting more attention from both scientific and industrial communities because it can improve mechanical properties of PLA by blending L- or D-polymer together. However, the use of low-price nitrogen source for D-lactate fermentation by alkaliphilic organisms combined with NaOH-neutralizing agent based process has not been studied. Therefore, our goal was the demonstrations of newly simplify high-optical-purity D-lactate production by using low-priced peanut meal combined with non-sterile NaOH-neutralizing agent based fermentation. RESULTS In this study, we developed a process for high-optical-purity D-lactate production using an engineered alkaliphilic Bacillus strain. First, the native L-lactate dehydrogenase gene (ldh) was knocked out, and the D-lactate dehydrogenase gene from Lactobacillus delbrueckii was introduced to construct a D-lactate producer. The key gene responsible for exopolysaccharide biosynthesis (epsD) was subsequently disrupted to increase the yield and simplify the downstream process. Finally, a fed-batch fermentation under non-sterile conditions was conducted using low-priced peanut meal as a nitrogen source and NaOH as a green neutralizer. The D-lactate titer reached 143.99 g/l, with a yield of 96.09 %, an overall productivity of 1.674 g/l/h including with the highest productivity at 16 h of 3.04 g/l/h, which was even higher than that of a sterile fermentation. Moreover, high optical purities (approximately 99.85 %) of D-lactate were obtained under both conditions. CONCLUSIONS Given the use of a cheap nitrogen source and a non-sterile green fermentation process, this study provides a more valuable and favorable fermentation process for future polymer-grade D-lactate production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Open Fermentative Production of Polymer-Grade L-Lactate from Sugarcane Bagasse Hydrolysate by Thermotolerant Bacillus sp. Strain P38

Lactic acid is one of the top 30 potential building-block chemicals from biomass, of which the most extensive use is in the polymerization of lactic acid to poly-lactic-acid (PLA). To reduce the cost of PLA, the search for cheap raw materials and low-cost process for lactic acid production is highly desired. In this study, the final titer of produced L-lactic acid reached a concentration of 185...

متن کامل

Non-Sterilized Fermentative Production of Polymer-Grade L-Lactic Acid by a Newly Isolated Thermophilic Strain Bacillus sp. 2–6

BACKGROUND The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure L-lactic acid is essential for polymerization of PLA. The high fermentation cost of L-lactic acid is another limitation for PLA polymers...

متن کامل

Draft Genome Sequence of Alkaliphilic Exiguobacterium sp. Strain HUD, Isolated from a Polymicrobial Consortia

An alkaliphilic microorganism from the genus Exiguobacterium, Exiguobacterium sp. strain HUD was isolated from a fermentative, methanogenic polymicrobial microcosm operating at pH 10. The draft genome shows the presence of genes encoding for the metabolism of a range of carbohydrates under both aerobic and anaerobic conditions.

متن کامل

Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism.

Wild-type Bacillus subtilis ferments 20 g/liter glucose in 48 h, producing lactate and butanediol, but not ethanol or acetate. To construct an ethanologenic B. subtilis strain, homologous recombination was used to disrupt the native lactate dehydrogenase (LDH) gene (ldh) by chromosomal insertion of the Zymomonas mobilis pyruvate decarboxylase gene (pdc) and alcohol dehydrogenase II gene (adhB) ...

متن کامل

Non-sterilized fermentation of high optically pure d-lactic acid by a genetically modified thermophilic Bacillus coagulans strain

BACKGROUND Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbial cell factories

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016